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An automatic method for optimizing a weight function of a specific form for use in least-squares analysis is described. 
The function to be minimized is ~ (wilAFil 2) log (wilAFil2), subject to the condition that ~ wilAF~l 2 is constant. Min- 

i i 
imization is accomplished via a simplex method. 

In least-squares analysis a set of observed quantities, {F~}, 
is related to a model described by a set of parameters, {x;}. 
In order to obtain maximum accuracy with the least-squares 
method, weights should be used, which are related to the 
accuracy of the observations. Relative weights may reflect 
the trend in the IAF[, the absolute difference between the 
observed and calculated quantity. A weight function, w, 
depending on a very small number of parameters, is chosen 
so that the averages of wIAFI 2 are constant when the set of 
wIAF[ 2 values is analysed in any systematic fashion. Weights 
chosen in this way lead to estimates of the variances, a2(x~), 
which allow for all random experimental errors, such sys- 
tematic experimental errors as cannot be paralleled in the 
model, and such defects of the model as are not paralleled in 
the experimental data (Cruickshank, 1970). 

A reasonable measure, SN, of the goodness of the weight 
function may be defined as 

N 

SN = ~ Pi log Pi , 
i = 1  

where pi=kwi[AFi[ 2, and the constant, k, is chosen so that 
N 
~ p i = l .  

i = 1  

The function SN is the negative entropy function (Brillouin, 
1962), and some of its properties are of particular interest: 

(a) SN is a minimum and equal to - l o g  N if all p~ are equal 
to N-1.  This corresponds to wi = [AFi[ -2.  

(b) SN is a maximum and equal to zero if all but one of the 
Pi are zero. 

(c) Any kind of averaging procedure decreases SN. Thus if 
A is an N-dimensional square matrix with elements A~>0,  
and with the property that 

A,j= y~ A,j= I 
i j 

and if 
P;= Z Aijp~, 

J 

then SN(pl)<__SN(p~). The sign of equality holds only if A is 
the unit matrix. 

Suppose the set p; is divided into disjoint subsets, and 
every p~ is replaced by the average value within the subset 
to which it belongs, then the resulting value, SN, is smaller 
than SN. Thus SN is the upper bound of all values SN obtained 
in any method of analysis, and an optimal weight function 
of a chosen form may be found by minimizing SN with respect 
to the parameters in the weight function. However, the op- 
timization of the weight function breaks down if a few of the 
pi are much larger than the others, for example as a result of 
extinction, but this can be overcome by performing a normal 
probability analysis of wl/ZAF (Abrahams & Keve, 1971), 

and then removing the outstanding reflexions from the 
optimization. 

Rather than working with SN, whose minimum value is 
dependent on the number of observations, one may define 
a weight index, S, as S = 1 +SN/IOg N. The minimum and 
maximum of S are 0 and 1 respectively. 

Minimization of S is accomplished via the simplex method 
(Nelder & Mead, 1964-65). This method is chosen because 
S is a fairly complex function of the parameters in the weight 
function, and because these parameters may be heavily cor- 
related. It is also a convenient method for inclusion of differ- 
ent kinds of penalty functions, for example to secure positive 
weights or to limit the ratio between the maximum and min- 
imum weight. Furthermore, the method is rather insensitive 
to the choice of starting point. 

As an example of the use of the method, the results from 
an optimization of the weight function for 1-phenyl-3- 
methyi-5-(1,2,3-triazolio)sulfide (Sotofte & Nielsen, 1977)is 
shown. There are 882 observed reflexions, and the form of 
the weight function was chosen to be 

wi = [a + bFi + cF 2 + d(sin 0)/~] - 

The parameters for the optimized weight function were 
determined iteratively, first from the least-squares minimum 
obtained with unit weights, and second from the least- 
squares minimum of the weighted equations. In a final least- 
squares analysis convergence was obtained within one cycle 
giving an average shift less than one tenth of the estimated 
error, and the iterative process was considered to be com- 
pleted. Furthermore the final refinement yielded R and Rw 
values (0.039 and 0.038 respectively) identical to those ob- 
tained in the last cycle of the previous refinement. The par- 
ameters in the weight function were a =0.6820, b =  -0.1089, 
c =0-003619, and d=0.8169. The values of S before and after 
the final least-squares cycle were 0-107 and 0.109 respectively. 
The S obtained with unit weights was 0.215. 

A subsequent normal probability plot, with weights 
brought to a scale such that the standard deviation of an ob- 
servation of unit weight is unity, gave a slope of 0.901 and a 

Table 1. Analysis of (wIAF[ 2) as a .function of F 
Number of 

Interval reflexions (IAFI 2) (wldFI 2 ) 
5"04 110 1"086 1"034 
6"43 110 0"915 0"985 
7'85 110 0"776 0"980 
9.64 I10 0.447 0-780 

12-26 110 0"516 1"054 
15-93 110 0"284 0"835 
22"58 110 0"489 1"315 

142"98 112 3"447 1"018 
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correlation coefficient, e, of 0.999, indicating an almost nor- 
mal distribution of the weighted residuals. The corresponding 
values before the last least-squares refinement were 0.904 and 

Table 2. Analysis of (wIAFI 2) as a function of (sin 0)/2 

Number of 
Interval reflexions (IAFI 2 ) (wldFl 2) 
0"3084 110 3.093 1" 106 
0"3861 110 0"667 1"131 
0.4418 110 0"520 0"878 
0"4885 110 0.488 0"807 
0-5302 110 0"706 1-103 
0-5665 110 0"580 0"823 
0"6049 110 0"932 1"116 
0"6491 112 1"015 1"036 

0-999 respectively. The averages of wIAFI 2 analysed with 
respect to F and (sin 0)/2 are shown in Tables 1 and 2 respec- 
tively. The values in the tables are scaled such that the total 
average is unity and refer to the second determination of the 
weight function. 

Fig. 1 shows the correlation coefficient as a function of the 
weight index S for a fixed set AF. The different values of S and 
Q are obtained by varying the parameters in the weight func- 
tion. The correlation coefficient, Q, tends to 1 with decreasing 
value of S, in which case the wl/2AF are drawn from a normal 
distribution, and the least-squares method and the maximum- 
likelihood method become equivalent (Kendall, 1946). Al- 
though, as a general feature, this remains to be proved, the 
present method, as demonstrated by the example, is never- 
theless, together with a normal probability plot, a useful tool 
in the evaluation of crystal structure data. 
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Fig. 1. Plot of the correlation coefficient, e, v e r s u s  weight index, S. 
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Fast algorithms for 'inverting' singular matrices by modified Cholesky procedures produce a non-unique A'2 generalized 
reciprocal matrix rather than the generalized inverse A +. 

Some crystallographic applications of generalized inverse 
matrices have been described (Mackay, 1977) and further 
food for thought may be gleaned from standard texts 
(Pringle & Rayner, 1971, Boullion & Odell, 1971). In addi- 
tion to these applications the use of generalized inverse 
matrices is currently undergoing something of a renaissance 
in a related area of physical science, namely empirical 
valence-force-field or molecular-mechanics calculations of 
crystal (Warshel & Lifson, 1970) and molecular structure 
(White, 1977). Unfortunately, the search for efficient al- 
gorithms to generate generalized inverses has precipitated 
several difficulties which have been discussed by Ermer 
(1975) although no explanation was offered. These problems 
have an almost exact parallel in the refinement of structure 
factors by the methods described in Mackay's paper and 
we offer the following clarification. 

Some definitions are required because the nomenclature 
of generalized inverses is something of a semantic minefield. 
For any matrix P, square or rectangular, there exists a unique 
matrix Q satisfying the conditions 

PQP = P (1) 

Q P Q = Q  (2) 

(PQ)*  = PQ (3) 

(QP)*  = Q P .  (4) 

Furthermore, (a) a one-condition, generalized reciprocal 
matrix of P is a matrix Q=p,1  satisfying (1); (b) a two- 
condition, generalized reciprocal matrix of P is a matrix 
Q = P  r2 satisfying (1) and (2); (c) a left-weak, generalized 
reciprocal matrix of P is a matrix Qm-pr3 satisfying (1), (2) 
and (3); (d) a right-weak, generalized reciprocal matrix of 
P is a matrix Q=p '3 '  satisfying (1), (2) and (4); (e) the gen- 
eralized inverse matrix of P is a matrix Q--P + satisfying 
(1)-(4). 

The following inclusion relations are true 

p+ ___ pr3 ___ p'2 ___ p ' l  

p + ~ p,3' ~ p'2 


